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Abstract— The phenomena of conjugate unsteady heat transfer from a spherical droplet or particlemovingina
continuous fluid medium is numerically investigated. The energy equation is solved for a spherical droplet
using the implicit, finite-difference method of alternating directions (ADI). In this study, the volumetric heat
capacities of the two phases are of comparable magnitude but not necessarily equal to each other and the value
of the thermal diffusivities of the two phases are set equal to each other. The range of Péclet numbers
investigated are: 50 < Pe < 1000, with ratios of volumetric heat capacities, (interior to exterior) varying
between 0.333 and 3.0. The velocities used in the convective terms are those corresponding to low Reynolds
number flow. It was found that the dimensionless temperature profile asymptotically approaches a steady-
state value that is independent of the initial profile in the droplet.

INTRODUCTION

IN MANY situations involving heat transfer from an
isolated sphere to an infinite medium, the ratio of
thermal properties is such that transfer to only one
phase needs to be calculated to obtain a reasonable
approximation of the transfer rates. There are two such
extreme cases: the so-called, ‘external’ and ‘internal’
problems. Both of these special cases postulate an
isothermal, interfacial boundary condition, with ther-
mal resistance assumed to be in one phase only.

An example of the external problem (where the
resistance is primarily in the continuous phase), is arain
dropletdescendingin the atmosphere. For a water drop
in air, the ratio of volumetric heat capacities H (H =
£1€1/P2€,), 1s about 4000 to 1, with the ratio of thermal
conductivities K (K = Ha,/a,), being about 20 to 1.
The subscripts 1 and 2 denote the droplet and the
continuous phase, respectively. Due to the large value
of K and H, this situation may be reasonably modeled
as an isothermal sphere with the heat transfer rate
governed only by the continuous phase resistance.

Several authors have investigated the special case
of the external problem, where the volumetric heat
capacity ratio was assumed infinite (thus the sphere
remains at its initial temperature). Brunn [1] ana-
Iytically developed equations for the steady-state
Nusselt number at small and large Péclet numbers at
low Reynolds numbsers for both fluid and solid spheres.
Abramzon and Fishbein [2] numerically solved the
steady-state energy equation for the case of the external
problem with moderate Péclet numbers (up to Pe =
1000). Their results suggest that the boundary-layer
assumptions are not reasonable for Pe < 1000.

The assumption that the temperature of the sphere
remains constant is only valid for large ratios of H,
where the volumetric heat capacity of the sphere is
much larger than that of the continuous phase. If the

volumetric heat capacity of the sphere is finite,
the temperature of the sphere will eventually approach
the ambient temperature. Abramzon and Elata [3]
computed the transient heat transfer rates from an
isothermal sphere with various finite values of H. They
found that for small values of H, the asymptotic Nusselt
number would be less than that predicted for a constant
temperature sphere. They also found that under certain
circumstances local Nusselt numbers, in the aft region
of the sphere could be negative, indicating a local
reverse flow of energy.

Considering the other extreme case, the internal
problem (where the bulk of the resistance is assumed to
be in the dispersed phase), there is no equivalent steady-
state situation corresponding to the steady-state
solution for a constant temperature sphere and
therefore a transient solution for the energy equation is
sought. For low Péclet numbers, Newman [4] in 1931
presented a solution for diffusion of mass into a sphere.
From Newman’s work one may show that the Nusselt
number (based on the internal properties) asymptoti-
cally approaches 6.58. For moderate Péclet numbers,
Johns and Beckmann [5] numerically integrated the
energy equation for the droplet region. They reported
oscillations in the Nusselt number that were due to the
recirculation of the fluid inside the droplet. Similar
results were obtained using a promising adaptive grid
scheme described in Dwyer et al. [6]. For high Péclet
numbers, a conventional boundary-layer analysis is
not appropriate for the internal problem except at very
small times, due to the recirculation of fluid inside the
droplet. Kronig and Brink [7] analytically solved the
energy equation for high Péclet numbers, with the
assumption that the isotherms are parallel to the
streamlines. As time increases the Nusselt number
predicted by the Kronig and Brink model asymptoti-
cally approaches a value (based on internal properties)
of 17.9.

879



880 D. L. R. Ouiver and J. N. CHUNG
1
NOMENCLATURE
a  radius of the sphere Z  dimensionless temperature,
A ratjo of thermal diffusivities, «,/x, (T-THT,,0—T,).
¢ specific heat
Fo Fourier number, a,t/a’ Greek symbols
H  ratio of volumetric heat capacities, o  thermal diffusivity
PiC1/P2Ca Y Z/z,
k  thermal conductivity p  density
K  ratio of thermal conductivities, k, /k, n 1/r
Pe Péclet number, 2aU /o, 0  tangential coordinate.
Q  net rate of heat diffusing from the sphere
r dimensionless radial coordinate, R/a Subscripts
R radial coordinate 1 dispersed phase
t time 2 continuous phase
T  temperature asy asymptotic
u  dimensionless radial velocity, U/U b bulk
U, velocity of the sphere int interior
v  dimensionless tangential velocity, V/U ext exterior
W Zr 0  initial
X ratio of dynamic viscosities, p,/i; oo free stream.

A third type of transfer from a sphere (the ‘conjugate
problem’), involves calculation of the temperature field
in both the continuous and dispersed phases. As with
theinternal problem, a transient solution is sought with
boundary-layer analyses being inapplicable except at
short times. Unlike the internal and external problems,
with their constant-temperature interfacial bound-
aries, continuity of the heat flux is used for the
interfacial boundary condition.

For the case of low Péclet number conjugate heat
transfer, Cooper [8] developed an analytical solution
for the temperature field for various combinations of
thermal properties. From Cooper’s work one may
show that for all conjugate problems, the Nusselt
number vanishes for large times with Pe = 0, whereas
for both the external problem (with H = o), and the
internal problem, the Nusselt numbers asymptoti-
cally approach 2.0 and 6.58, respectively.

For high Péclet numbers Chao [9] used boundary-
layer assumptions to estimate the heat transfer rates
from spheres. Due to the elliptic nature of the interior
region, such boundary-layer solutions will be inac-
curate except at small times.

Abramzon and Borde [10] used a finite-difference
(ADI) method to integrate the energy equation for
0 < Pe < 1000. Both fluid and solid spheres were
investigated. This work provides a good literature
review and insight into the transport process in droplets
and solid spheres. However, Abramzon and Borde’s
work suffers from two shortcomings : only systems with
identical thermal properties in both phases were
investigated ; and only low Reynolds number flows
were considered.

In this study, the work of Abramzon and Borde is
expanded by extending their analysis to include fluids

with variable ratios of volumetric heat capacities. Since
many liquid-liquid systems have Prandtl numbers
greater than 100, it is a useful exercise to investigate
the transient conjugate heat transfer from droplets
translating at low Reynolds numbers, but with
moderate Péclet numbers. Due to the many possible
permutations in this study, it is limited to systems in
which the ratio of thermal diffusivities is one. This
limitation is reasonable for certain liquid-liquid
hydrocarbon systems since the thermal diffusivity of
many liquid hydrocarbons is about 0.9 x 10~ " m?s~ 1.

MATHEMATICAL MODEL

A spherical droplet of radius ais moving steadilyina
continuous medium. The two fluids are immiscible and
non-reacting, with no surface active agents. Initially the
continuous phase experiences a step temperature
change. The properties of the two phases are assumed
to be constant and independent of temperature, hence
the flow field may be calculated prior to the integration
of the energy equation. The flow field is assumed fully
developed with the dimensionless velocity profiles
being obtained from the creeping flow solution of
Hadamard-Rybczinski, thus any effects of surface
tension are neglected (see Fig. 1 for a schematic of the
system for a fluid droplet):

P
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243X
Y, =|0.52— in?9 (1b
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=— — cosf e 2
uy 2(1+X)OOS . v, A+ X sinf (2a)
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Fi1G. 1. Schematic of the coordinate system and the flow lines

for a fluid sphere.
u I:l 2+3X + X ]cos 7}
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The uncoupled dimensionless energy equation may
be shown to be:

o, 0Z o, Pe, y oz + v 0Z
a; 0Fo, a; 2 or r 00
0*Z 20Z 1 0Z 1 ¢°Z
= Lot 2
o rar 2% + r 86? ®)

where Z is the dimensionless temperature based on the
initial temperature difference :

Z =(T=TT,,0—To). 4

The dimensionless parameters: Fo (Fourier number),
given by Fo = a,t/a® and Pe (Péclet number), Pe =
2aU ,/a,, are based on the external properties. The
initial and boundary conditions are:

Initial conditions

Zr,0,t=0=1, 0<r<l1 )
Zr,0,t=0=0, 1<r<oo. ©6)
Boundary conditions
0z, dZ,
o o el
(continuity of heat flux) (7a)
Z,=Z, at r=1 (7b)
Z(r,0,)=0, r—> ®)
oz
— =0, for =0 and 0=n

00
also, Z is finite at r = 0. (9)

SOLUTION PROCEDURE

At the droplet center (r = 0) the boundary condition
on Z(r = 0) is imposed by defining a new variable for
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the interior region: W = Zr. Thus the boundary

condition at the droplet center becomes:
W(r=0,t)=0. (10)

With the transformed energy equation for the droplet
phase being: .

_, OW  Pe, ow W v oW
+o2lul o ==+ -
0Fo, 24 or r r 00
w1 oW 1 PPW
= ot 2
oz Pty t e (W

In the exterior region, a high density of nodes are
used near the interface, with fewer nodes near the free
stream. This is accomplished by using the transform-
ation 5 = 1/r. This transformation appears to be a
better choice than the usual transformation ¢ = In (r),
in that the former transformation allows one to obtain a
close spacing near the interface, without regard to the
exact location at which the free-stream conditions are
imposed, since # =0 is a ‘point at infinity’. The
transformation n = 1/r also needs fewer total nodal
points for comparable grid spacing at the interface. The
transformed energy equation for the continuous phase
is given by:

0z +Pe2 2u62+ vaz
aFo, 2 | T8 """ %
3z 0z *Z
. 2 = 2_. 12
n pwe +n COtGaQ +7 207 (12)

The initial conditions for interior and exterior points
are:

Wr6,t=0=r,
Z(n,0,t=0=0, O<np<l.

O0<r<l1 (13)

(14)

The boundary conditions imposed on equations (11)
and (12) are:

W(r=0,t)=0, (15
ow W\ 0Z
— —— =1 =
K( . " )+ on 0, at r=1, =1 (l6a)
W=Z at r=1, n=1 (16b)
ow oz
Er " 20 0, for 0 and 8=n (17)
Zin=0,0,t)=0 (free-stream condition). (18)

Equations (11) and (12) were solved with a ADI
procedure similar to that used by Abramzon and Borde
[10], the primary exceptions being the transformation
used in equation (12), and the interfacial boundary
condition [equation (16a)]. It was not found necessary
to use any up-wind differencing scheme to model the
convective terms, these terms were modeled with
central-difference approximations. Equations (11) and
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(12) yield the following discrete approximations :

1 dw; Peu 1 -
A dFo, \4AAr AF?) Y

+ —Peu 1 W
44Ar  Ar2) TN

+ Pev cot 6

44rA0  2r°A0 2A92 Wi
4 —Pev . cot 0

4ArA0 T 2rPA0 2A02

—Peu 2

- W..=0 (19
+( 2Ar t Az Ar? 2A62> i (19)

4An  An?
—P 2 4
N eun® -
4An An? /
Pevn n?cotf g2
+<4A6 TT2a6 ) G
—P Zcotf n?
. eon  n*co _11_27 .
4A0 2A8 AB

oo
+2<F+W)Z =0. (20)
The step size An is chosen such that Ap = Ar/(Ar+1).

With this step size and the initial conditions at the
interface, a control volume analysis yields the initial
interfacial temperature of:

Wir=10,t=0=2Zn=1,86,0)
= H/[(1+Ar)+H]. (21)
The interfacial boundary condition [equation (16a)]
is approximated by:

KAn

3KA
o W 4Wm_1,,.)+<—J —2KAn+3> W,

Ar
_4Zm+1,j+Zm+2.j =0 (22)

where m denotes the column corresponding to the
interfacial boundary.

The symmetrical boundaries [equation (17)] are
modeled as:

VVi,3_4VVi,2+3VVi,1 =0 (23a)
VVi.m—Z—4VVi.m—1+3m.m=Ov (23b)

[Note: Z replaces W in equations (23a) and (23b) for
r > 1, and m denotes the final tangential column.]
When equations (19) and (20) are treated in the
normal ADI method, a tridiagonal matrix results
everywhere except at the interfacial boundary
[equation (22)], and at the symmetrical boundaries
[equations (23a) and (23b)]. At these three boundaries
the tridiagonal algorithm is modified to account for the
additional matrix components which are outside the

for all i.

D. L. R. Ouiver and J. N. CHUNG

main three bands. A 41 x 41 grid was used for Pe <
1000 (i.e. Ar = 1/40,A8 = =/40),a 51 x 51 grid was used
for Pe = 1000. The time step used varied with each
simulation, depending on the Péclet number, the ratio
of thermal diffusivities, and the ratio of viscosities. For
each simulation the time step was held constant. The
time step was not increased with time for two reasons:
the system might be unstable if time step was too large,
and the LU decompositions of the resulting matrices
needed to be recomputed with each change in the time
step size. Further details of the solution procedure and
the grid dependence are given in Oliver [13].

COMPARISONS WITH PREVIOUS
INVESTIGATIONS

The above model and coding may be verified and
benchmarked against the results of several previous
investigators. The Nusselt number will be used to
compare the present model with the various special
cases cited above. The bulk dimensionless temperature

is given as:
3 L 1
== f '( Zr?sin 0 dr 4. (24)
2Jo Jo
The Nusselt number is defined by the relation:
2aQ
Nu, = — 2
2T drad(T, — T K, )
which is equivalent to:
-2 1 dz,
Nu=—H——. 26
T3 Yz, dFo (26)

One may also calculate the Nusselt number by
calculating the flux of heat from the surface of the

sphere:
1J"'622
Nu=— | —
Zy Jo On n=1

If H is large, or if the time steps are small, then the
change in the bulk temperature with each time step
might be small. Under these conditions equation (26)
willnot be a good predictor of the Nusselt number since
the bulk temperature changes slowly. Evenwith H = 1,
there may be a significant difference in the Nusselt
number predicted by equations (26) and (27), par-
ticularly at large Péclet numbers (i.e. for large times,
about 2-3% for Pe = 500, A =1, and H = 1 with a
41 x 41 grid mesh). This difference may be reduced
by increasing the number of nodes used. Generally,
equation (27) was used to calculate the Nusselt
numbers.

For the case of low Péclet number heat transfer, the
predictions of the present model may be compared with
the analytic solution of Cooper [8]. From the work of
Cooper, an explicit equation for both the Nusselt

sin 0 d6. 27
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number and the bulk temperature may be shown to be:

Z, = 6/nKA? f ) [G(w)/u*] du (28)
0
J ) G(u) du
Nu =2/3K =22 (29)

J Gwu 2 du

where

exp (—u2AFo)(u cos u—sin u)?
{Au? sin® u+[K(u cos u—sin u) +sin u]*}’

G(u) =

Equations (28) and (29) were numerically integrated
using Gauss quadrature methods for several values of
H and A. In Fig. 2, the Nusselt numbers based on the
analytical work of Cooper are plotted for comparison
with the values predicted by the present numerical
model. For all cases tested, it was found that there is a
good agreement between equation (29) and the present
model (with Pe = (), except for extreme cases such
as very short times, or extreme ratios of thermal
properties.

The present model has also been tested against the
numerical solution of Johns and Beckmann [5] for the
special case of the internal problem. For comparison
with the internal problem, both the Nusselt number
and the Fourier number reported in their work (which
are based on internal properties) must be converted to
parameters which are based on the external properties.
Theinternal problem has been approximated by setting
the volumetric heat capacity ratio to H = 0.005 with
the ratio of diffusivities set to 4 = 2. Simulations were
performed for Pe = 320 and 640 with a ratio of
viscosities of X = 0. In Fig. 3 the Nusselt numbers
predicted by the present model as compared with the
appropriate cases reported by Johns and Beckmann are
plotted.

For the case of external resistance, the present model
(with H = 100, 4 = 1) has been compared with the
transient solution for the external problem presented in

o Cooper Solution
— Present Results

=3, H=3

Nusselt Number

i
.10

|
0.05
Fourier Number

F1G. 2. Nusselt number for Pe = 0; comparison with the
solution of Cooper.

HMT 29:6-E

___ Johns & Beckmann
0.3 |L — Present Results
A= 2, H= .005,X= 0.

0.2

Nusselt Number

[oX]

1

0.0 0.05 0.10

Fourier Number

FiG. 3. Nusselt number for the interior problem ; comparison
with the solution of Johns and Beckmann.

Abramzon and Flata [3] (with H = oo) for Pe = 300
and Pe = 1000. The Nusselt number predicted by the
present model is plotted in Fig. 4 for comparison with
the results reported by Abramzon and Elata.

In all cases tested—the low Péclet number conjugate
problem, the internal problem, and the external
problem—the present model compares favorably with
the special cases cited above.

RESULTS AND DISCUSSION

Initially the sharp gradients near the interface cause a
rapid rate of heat transfer with a correspondingly high
Nusselt number. For a fluid sphere at moderate Péclet
numbers the Nusselt number oscillates with a decaying
amplitude. The oscillations are due to the circulation of
the fluid, in the interior of the droplet. This circulation
of fluid alternately supplies hot and cold fluid to the
fore region of the droplet where most of the transfer
takes place. As time increases the Nusselt number
asymptotically approaches a steady value. The Nusselt

Solid Sphere
&l -
Pe = 1000
9 —
H
a8
£
3
Z o |
—-— Pe = 300
§ ——- Abramzon 8 Elata (H=w)
3 ©
2
— Present Results (H=100,A=1)
T
! I L

.0l 0.1 1.O
Fourier Number
F1G. 4. Nusselt number for the external problem ; comparison
with the solution of Abramzon and Elata.
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0.0 0.1 0.2
Fourier  Number
FI1G. 5a. Nusselt numbers for adroplet with X = land H = 1,
A=1

number for a solid sphere also approaches an
asymptotic value, but without any oscillations. Such
behavior of the Nusselt number is illustrated in Figs. 5a
and b.

The asymptotic Nusselt number appears to be a
good parameter for quantifying the transfer capabilities
of a particular system. It appears to be independent of
both time and of the initial temperature profile of the
sphere, whereas the initial transient behavior of the
Nusselt number is a strong function of the initial
conditions in the sphere. As an example of this
independence, several simulations were made with
initial conditions that were other than those given in
equation (5). Specifically, cases were simulated using
parabolic and linear initial temperature profiles:

Z(r, 0,0) = 1—r? (parabolic), 0<r<1
and
Z(r,0,0) = 1 —r (linear), 0 <r<1.
The simulations with the parabolic initial conditions
were made with H = 1 and Pe = 1000 for both a fluid
sphere and a solid sphere. Similar calculations were

made with the linear initial profile for H = 1 and Pe =
200. The Nusselt numbers predicted for these four

1o |
3 Pe = 1000
N I Pe = 500
3
_g -
25 | Pe
% -
H Pe = 50
3
2
o L ( .
0.0 0.1 0.2

Fourler Number

F1G. 5b. Nusselt number for a solid sphere with H = 3,4 = 1.
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15 f
A — Reference int. cond.
f \ -.—- Parabolic int. cond.
I _-- Linear int. cond.

1000

Nusselt Number

0.0 O.l

Fourier Number

0.2

F16G. 6a. Nusselt number as a function of the initial temperature
inside the droplet with X =1, H =1and 4 = 1.

simulations are shown in Figs. 6a and b for comparison
with the Nusselt numbers predicted with the reference
initial conditions [equation (5)]. Note the dependence
(at small times) of the Nusselt number on the initial
conditions and the independence of the asymptotic
behavior of the Nusselt number on the initial tem-
perature profile of the sphere.

The primary frequency of oscillation of the Nusselt
number, for a fluid sphere, is also independent of
the initial temperature profile of the sphere. This
demonstrates that the oscillations in the Nusselt
number are due to the circulation of fluid inside the
droplet, which is independent of the initial temperature
profiles.

Since the value of the asymptotic Nusselt number
appears to be independent of the initial conditions of
the sphere, it is an important parameter with respect to
comparing heat transfer capabilities of various systems.
Abramzon and Borde [10] proposed the simple
predictive equation for the asymptotic Nusselt
number :

1 ]!
Nu,, ~|——+— 30
uasy |:K Nuint * Nuexl] ( )

—_ Reference int. cond.
.— . Parabolic int. cond.
___ Linear initial cond.
é 5 L 1000
R
K
>
@
2 F
=)
z
] . !
0.0 0.l 0.2

Fourier Number

Fi1G. 6b. Nusselt number as a function of the initial temperature
inside a solid sphere with H = 1 and 4 = 1.
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with Nuy, representing the asymptotic value of the
Nusselt number for the interior problem (based on the
properties of the droplet phase), and Nu,,, representing
the asymptotic value of the Nusselt number for the
exterior problem with H = oco. The values of the
asymptotic Nusselt numbers for the interior problem
may beread fromagraphon p.60of Cliftet al. [11]. The
values of the asymptotic Nusselt numbers for the
exterior problem may be read from a chart presented in
Abramzon and Fishbein [2].

Abramzon and Borde showed that equation (30)
predicted Nu,,, reasonably well for moderate Péclet
numbers for the special case of H other than 1. To test
the accuracy of equation (30) for other moderate values
of H, the values of the asymptotic Nusselt number
predicted by the present finite-difference model are
listed in Table 1, with the values of the asymptotic
Nusselt number predicted by equation (30) listed
in parenthesis. A note of caution should be made
regarding the asymptotic Nusselt number ; the decay to
a steady value of the Nusselt number was often slow,
especially for low Péclet numbers. Thus it was difficult
to determine the exact asymptotic value of the Nusselt
number, particularly for low Péclet numbers. A small
time step was required since instabilities were noticed
with this solution procedure. Thus, computer time
limitations prevented the use of a strict convergence
criterion.

Equation (30) adequately predicts the asymptotic
value of the Nusselt number for moderate Péclet
numbers. At low Péclet numbers equation (30) will
overpredict the asymptotic Nusselt number. For pure
diffusion, the interior problem and the exterior problem
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both have finite values for the asymptotic Nusselt
number (6.6 and 2.0, respectively), thus equation (30)
would predict a finite value for the asymptotic Nusselt
number for the conjugate problem for Pe = 0. How-
ever, from the analytic work of Cooper [8] it may
be shown that the asymptotic Nusselt number for the
conjugate problem with pure diffusion (Pe = 0) is zero.
Thus equation (30) will overpredict the asymptotic
Nusselt number at low Péclet numbers for conjugate
problems.

The asymptotic value of the Nusselt number is the
result of the asymptotic behavior of the dimensionless
temperature profiles when scaled by the dimensionless
bulk temperature. Define: Y(r, 8) to be the local
dimensionless temperature scaled by the dimen-
sionless temporal bulk temperature, i.e. Y(r, 0, ) =
Z(r, 0, 1/Z,. As time increases Y becomes inde-
pendent of both time and the initial temperature
profile of the sphere. The independence of Y on both
time and the initial conditions is illustrated well by Figs.
7a and b. In these figures, the contours of Y are plotted for
two cases. Each has a different initial temperature
profile and a different bulk temperature, and each
temperature profile is evaluated at different times yet
they both have essentially identical contour profiles
of 1.

The steady-state profiles of Y for Pe = 100 and
Pe = 1000 have been plotted on Figs. 8 and 9. The
same viscosity ratio and thermal conductivity ratios
were used so that the development of the tempera-
ture profiles with respect to the Péclet number could
be observed in Figs. 7-9. At lower values of Péclet
numbers, where conduction is still quite important,

Table 1. (a) Approximate asymptotic value of the Nusselt number : solid

spheres, A = 1
Exteriort
Interior* problem
Pe  problem H =0.333 H=1 H=30 (H = 0)
50 6.6 1.15(1.39) 2.24(2.74) 3.4(3.8) 4.7
100 6.6 1.46(1.46) 2.82(3.0) 42(4.4) 5.6
200 6.6 1.67(1.53) 34(3.3) 5.1(5.1) 6.8
500 6.6 1.86(1.61) 4.1(3.8) 6.5(6.1) 8.9
1000 6.6 1.94(1.67) 4.6(4.1) 7.9(7.0) 109
(b) Approximate asymptotic value of the Nusselt number: fluid spheres,
X=1A4=1
Interior} Exteriort
Pe  problem H=0.333 H=1 H =30 problem
50 82 1.40(1.70) 2.67(3.3) 4.04.5) 5.5
100 11.2 2.03(2.26) 3.6(4.3) 52(5.8) 6.9
200 14.9 2.67(2.98) 4.8(5.6) 6.9(7.5) 9.0
500 17.1 4.0(3.7) 7.2(7.4) 10.2(10.4) 131
1000 17.7 4.6(4.1) 9.2(8.8) 13.5(13.2) 17.6
* Newman.

1 Obtained by solving numerically the energy equation for the external

region.

1 Obtained by solving the energy equation for the interior problem. The
Nusselt number in this case is based on the internal properties (Nu,).



886 D. L. R. OLiviR and ¥ N. CHUNG

Linear initial profile

Fo = .3002, Z, = .0066

a:T1=1.4,b:T1= 1.}, c:7=0.8,d:17= 0.3, 06:7=0.l

F1G. 7a. Profile of Y for a fluid sphere with a linear initial
temperature profile inside the sphere with Pe = 200, X =1
and H = 0.333.

Reference initiai profile

b

a:r=14,b:1T=11,c:7=08,d:7=03, e:7T =01

FIG. 7b. Profile of Y for a fluid sphere with the reference initial
profile [equation (5)}, with Pe = 200, X = land H = 0.333.

there is little correlation between the temperature
contours and the streamline contours. For larger values
of Péclet numbers, the temperature contours begin to
resemble the streamline contours, except near the
upstream region of the continuous phase.

Finally, the above result may be readily applied to
the problem of mass transfer to droplets and particles.

a:T =14,b:r=011,c:T=08,d:iT=0.3,e:T7=0.1

FiG. 8. Asymptotic profile for Y for a droplet with X =1,
H = 0.333 and Pe = 100.

a:T=14,b:T=L}, ¢:T=0.8, d:T=0.3, e:T 0.

FI1G. 9. Asymptotic profile for Y for a droplet with X =1,
H = 0.333, Pe = 1000.

Clift et al. {11] present a good review of the one to one
correspondence of heat and mass transfer in droplets
under certain circumstances.

CONCLUSION

The unsteady conjugate heat transfer rates from
a fluid sphere and a spherical particle have been
numerically estimated for low Reynolds number flows,
where the thermal diffusivities of the two phases
are equal, with ratios of the thermal capacities of
0333 < H <3, and for Péclet numbers of 50 <
Pe < 1000.

The temperature profile, when made dimension-
less by the difference between the temporal bulk
temperature of the sphere and the ambient tempera-
ture, appears to decay to an asymptotic steady-state
profile that is independent of both time and the initial
conditions of the droplet. As a result of this asymptotic
behavior of the dimensionless temperature profile, the
Nusselt number also asymptotically approaches a
steady-state value. The value of the asymptotic Nusselt
number may be adequately approximated, for the
range of parameters investigated, by the relation given
in equation (30).
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TRANSFERT THERMIQUE CONJUGUE, VARIABLE D'UNE GOUTTE SPHERIQUE A
FAIBLE NOMBRE DE REYNOLDS

Résumé—On étudie les phénomenes de transfert thermique conjugué variable a partir d’'une goutte ou d’une
particule sedéplacant dans un milieu continu fluide. L’équation d’énergie est résolue pour une sphérule par une
méthode implicite de difféerences finies avec directions alternées (ADI). Dans cette étude, les capacités
thermiques volumiques des deux phases sont comparables mais pas nécessairement égales et les valeurs des
diffusivités thermiques des deux phases sont égales. Le domaine des nombres de Péclet sont 50 < Pe < 1000,
avec des rapports des capacités thermiques volumiques (intérieure a extérieure) variant entre 0,333 et 3,0. Les
vitesses utilisées dans les termes convectifs sont ceux correspondant i I'écoulement a faible nombre de
Reynolds. On trouve que le profil de température adimensionnel approche asymptotiquement une valeur
permanente qui est indépendante du profil initial dans la goutte.

GEKOPPELTE INSTATIONARE WARMEUBERTRAGUNG VON EINEM KUGELFORMIGEN
TROPFEN BEI NIEDEREN REYNOLDSZAHLEN

Zusammenfassung—Das Phinomen der gekoppelten instationdren Wérmeiibertragung von einem kugel-
formigen Tropfchen oder Partikel, das sich in einem Fluid bewegt, wird numerisch untersucht. Die
Energiegleichung wird fiir einen kugelférmigen Tropfen mit dem impliziten Differenzenverfahren fiir
alternierende Richtungen (ADI) gelost. Bei dieser Untersuchung sind die volumetrischen Wirme-
kapazititen der beiden Phasen von vergleichbarer, aber nicht notwendigerweise gleicher GréBe. Der
Wert der Temperaturleitfahigkeit der beiden Phasen wird als gleich angenommen. Der Bereich der unter-
suchten Peclet-Zahlen erstreckt sich von 50 < Pe < 1000; dabei variieren die Verhiltnisse der volu-
metrischen Wirmekapazititen (innere zu duBere) von 0,333 bis 3,0. Die in den Termen fiir Konvektion
beniitzten Geschwindigkeiten entsprechen Stromungen mit niederer Reynolds-Zahl. Es ergab sich, daB das
dimensionslose Temperaturprofil sich dem Wert eines stationdren Zustandes, der vom anfinglichen Profil
im Tropfen unabhingig ist, annédhert.

COIMPSXXEHHBII HECTAIIUOHAPHBIN TEIJIOIIEPEHOC COEPUUECKON KAITIU
IMPY MAJILIX YNCJIAX PEMHOJILACA

Annotanas—YuceHHo McceayeTcs CONPSKCHHbIN HeCTALMOHAPHBIH TennoobMeH aBHXyLLeica chepu-
4ECKOM KalJIH HJIM YaCTHIIbI CO CIUIOIIHOM XKHAKOH cpeoil. Y paBHEHHE 3HEPTrUM 11 CHEPHIECKON KAIJIH
peiaeTcsi HEABHEIM KOHEYHO-Pa3HOCTHBIM METOMOM IEPEMEHHBIX HanpapieHuil. O6beMHbIe TEMI0eM-
KocTH 0feux a3 cpaBHEMBI Mex Ty cOO0#, HO He 00s3aTeNbHO PAaBHbL, & HX TEMIEPATYPONPOBOAHOCTH
CUMTalOTCA OAMHAKOBbIMHM. MccnegoBaHus mpoBoasTcs B auanasone uucen Ilexkne ot 50 mo 1000,
NIpUYEM OTHOLICHHS OOBEMHBIX TEMJIONPOBOAHOCTEH (BHYTPEHHEH M HAPYXHOH (ha3) H3IMEHSIOTCH OT
0,333 no 3,0. CxopocTH, HCTIOIE3yeMble B KOHBEKTHBHBIX YJIEHAX, COOTBETCTBYIOT TEYEHUIO MPH MAJIbIX
yucnax Peitnonbaca. HaitneHo, yTo npoduib Gespa3mepHOli TeMMepaTypbl aCUMIOTOTHYECKH NPHO/IN-
XKaeTcs K CTAMOHAPHOMY Npoduino, HE3aBHCHMOMY OT €0 Ha4aJIbHOM KOHGHUIYpalLMy B Kafe.



