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Abstract-The phenomena of conjugate unsteady heat transfer from a spherical droplet or particle moving in a 
continuous fluid medium is numerically investigated. The energy equation is solved for a spherical droplet 
using the implicit, finite-difference method of alternating directions (ADI). In this study, the volumetric heat 
capacities of the two phases are of comparable magnitude but not necessarily equal to each other and the value 
of the thermal diffusivities of the two phases are set equal to each other. The range of Pkclet numbers 
investigated are: 50 < Pe < 1000, with ratios of volumetric heat capacities, (interior to exterior) varying 
between 0.333 and 3.0. The velocities used in the convective terms are those corresponding to low Reynolds 
number flow. It was found that the dimensionless temperature profile asymptotically approaches a steady- 

state value that is independent of the initial profile in the droplet. 

INTRODUCTION 

IN MANY situations involving heat transfer from an 
isolated sphere to an infinite medium, the ratio of 
thermal properties is such that transfer to only one 
phase needs to be calculated to obtain a reasonable 
approximation of the transfer rates. There are two such 
extreme cases: the so-called, ‘external’ and ‘internal 
problems. Both of these special cases postulate an 
isothermal, interfacial boundary condition, with ther- 
mal resistance assumed to be in one phase only. 

An example of the external problem (where the 
resistance is primarily in the continuous phase), is a rain 
droplet descending in the atmosphere. For a water drop 
in air, the ratio of volumetric heat capacities H (H = 

p,c,/p,c,), is about 4000 to 1, with the ratio ofthermal 
conductivities K (K = Hu,/LY,), being about 20 to 1. 
The subscripts 1 and 2 denote the droplet and the 
continuous phase, respectively. Due to the large value 
of K and H, this situation may be reasonably modeled 
as an isothermal sphere with the heat transfer rate 
governed only by the continuous phase resistance. 

Several authors have investigated the special case 
of the external problem, where the volumetric heat 
capacity ratio was assumed infinite (thus the sphere 
remains at its initial temperature). Brunn Cl] ana- 
lytically developed equations for the steady-state 
Nusselt number at small and large P&let numbers at 
low Reynolds numbers for both fluid and solid spheres. 
Abramzon and Fishbein [2] numerically solved the 
steady-state energy equation for the case of the external 
problem with moderate P&let numbers (up to Pe = 

1000). Their results suggest that the boundary-layer 
assumptions are not reasonable for Pe < 1000. 

The assumption that the temperature of the sphere 
remains constant is only valid for large ratios of H, 

where the volumetric heat capacity of the sphere is 
much larger than that of the continuous phase. If the 

volumetric heat capacity of the sphere is finite, 

the temperature of the sphere will eventually approach 
the ambient temperature. Abramzon and Elata [3] 
computed the transient heat transfer rates from an 
isothermal sphere with various finite values of H. They 
found that for small values of H, the asymptotic Nusselt 
number would be less than that predicted for a constant 
temperature sphere. They also found that under certain 
circumstances local Nusselt numbers, in the aft region 
of the sphere could be negative, indicating a local 
reverse flow of energy. 

Considering the other extreme case, the internal 
problem (where the bulk of the resistance is assumed to 
be in the dispersed phase), there is no equivalent steady- 
state situation corresponding to the steady-state 
solution for a constant temperature sphere and 
therefore a transient solution for the energy equation is 
sought. For low P&let numbers, Newman [4] in 1931 
presented a solution for diffusion of mass into a sphere. 
From Newman’s work one may show that the Nusselt 
number (based on the internal properties) asymptoti- 
cally approaches 6.58. For moderate P&let numbers, 
Johns and Beckmann [S] numerically integrated the 
energy equation for the droplet region. They reported 
oscillations in the Nusselt number that were due to the 
recirculation of the fluid inside the droplet. Similar 
results were obtained using a promising adaptive grid 
scheme described in Dwyer et al. [6]. For high P&let 
numbers, a conventional boundary-layer analysis is 
not appropriate for the internal problem except at very 
small times, due to the recirculation of fluid inside the 
droplet. Kronig and Brink [7] analytically solved the 
energy equation for high P&let numbers, with the 
assumption that the isotherms are parallel to the 
streamlines. As time increases the Nusselt number 
predicted by the Kronig and Brink model asymptoti- 
cally approaches a value (based on internal properties) 
of 17.9. 
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NOMENCLATURE 

radius of the sphere Z dimensionless temperature, 

ratio of thermal diffusivities, CQ/Q (T- T,)/(T,,,- T,). 
specific heat 
Fourier number, u&a’ Greek symbols 

ratio of volumetric heat capacities, thermal diffusivity 

P,c,lP,c, ay Z/Z, 
thermal conductivity P density 

ratio of thermal conductivities, k,/k, l/r 
P&let number, 2aU,/cc, ii tangential coordinate. 

net rate of heat diffusing from the sphere 
dimensionless radial coordinate, R/a Subscripts 

radial coordinate 1 dispersed phase 

time 2 continuous phase 

temperature asy asymptotic 

dimensionless radial velocity, U/U, b bulk 

velocity of the sphere int interior 

dimensionless tangential velocity, V/U, ext exterior 

Zr 0 initial 

ratio of dynamic viscosities, p,/p2 cc free stream. 

A third type of transfer from a sphere (the ‘conjugate 
problem’), involves calculation of the temperature field 
in both the continuous and dispersed phases. As with 
the internal problem, a transient solution is sought with 
boundary-layer analyses being inapplicable except at 
short times. Unlike the internal and external problems, 
with their constant-temperature interfacial bound- 
aries, continuity of the heat flux is used for the 
interfacial boundary condition. 

For the case of low P&let number conjugate heat 
transfer, Cooper [8] developed an analytical solution 
for the temperature field for various combinations of 
thermal properties. From Cooper’s work one may 
show that for all conjugate problems, the Nusselt 
number vanishes for large times with Pe = 0, whereas 
for both the external problem (with H = co), and the 

internal problem, the Nusselt numbers asymptoti- 
cally approach 2.0 and 6.58, respectively. 

with variable ratios of volumetric heat capacities. Since 
many liquid-liquid systems have Prandtl numbers 
greater than 100, it is a useful exercise to investigate 
the transient conjugate heat transfer from droplets 
translating at low Reynolds numbers, but with 
moderate P&let numbers. Due to the many possible 
permutations in this study, it is limited to systems in 
which the ratio of thermal diffusivities is one. This 
limitation is reasonable for certain liquid-liquid 
hydrocarbon systems since the thermal diffusivity of 
many liquid hydrocarbons is about 0.9 x lo-’ m2 s-i. 

MATHEMATICAL .MODEL 

For high P&let numbers Chao [9] used boundary- 
layer assumptions to estimate the heat transfer rates 
from spheres. Due to the elliptic nature of the interior 
region, such boundary-layer solutions will be inac- 
curate except at small times. 

Abramzon and Borde [lo] used a finite-difference 
(ADI) method to integrate the energy equation for 
0 < Pe < 1000. Both fluid and solid spheres were 
investigated. This work provides a good literature 
review and insight into the transport process in droplets 
and solid spheres. However, Abramzon and Borde’s 
work suffers from two shortcomings : only systems with 
identical thermal properties in both phases were 
investigated ; and only low Reynolds number flows 
were considered. 

A spherical droplet of radius a is moving steadily in a 
continuous medium. The two fluids are immiscible and 

non-reacting, with no surface active agents. Initially the 
continuous phase experiences a step temperature 
change. The properties of the two phases are assumed 
to be constant and independent of temperature, hence 
the flow field may be calculated prior to the integration 
of the energy equation. The flow field is assumed fully 
developed with the dimensionless velocity profiles 
being obtained from the creeping flow solution of 
Hadamard-Rybczinski, thus any effects of surface 
tension are neglected (see Fig. 1 for a schematic of the 
system for a fluid droplet) : _ 

y1=r4_r2 
4(1 t-X) 

sin2 6 

Y’, = 
2+3X 

0.5r2- ___ 
1 

___ 
4(1+X)r+4(1+X)r 1 sin’ 0 

In this study, the work of Abramzon and Borde is r2-1 l-2r2 

expanded by extending their analysis to include fluids 
u1 =pcose, ui =p 

2(1+x) 2(1+X) 
sin B 
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FIG. 1. Schematic of the coordinate system and the flow lines 
for a fluid sphere. 

(2’4 

The uncoupled dimensionless energy equation may 
be shown to be: 

‘“+~!g[u!E+cz] 
uj aF.0, 

In the exterior region, a high density of nodes are 
used near the interface, with fewer nodes near the free 
stream. This is accomplished by using the transform- 
ation rl = l/r. This transformation appears to be a 
better choice than the usual transformation 5 = In (r), 
in that the former transformation allows one to obtain a 
close spacing near the interface, without regard to the 
exact location at which the free-stream conditions are 
imposed, since q = 0 is a ‘point at infinity’. The 
transformation rl = l/r also needs fewer total nodal 
points for comparable grid spacing at the interface. The 
transformed energy equation for the continuous phase 
is given by : 

2 az Pe, 
=$+f$+fc0teg+f$ (3) aFo,+y --12u~+flv~ [ 

az az I 

the interior region: W = Zr. Thus the boundary 
condition at the droplet center becomes : 

W(r = 0, t) = 0. (10) 

With the transformed energy equation for the droplet 
phase being : 

A-’ g&+$[u(!g-;)+f$] 

=~+fc~te~+f$. (11) 

where Z is the dimensionless temperature based on the 
initial temperature difference : 

z = (T- WK,,-Tad. (4) 

The dimensionless parameters : Fo (Fourier number), 
given by Fo = a2t/a2 and Pe (P&let number), Pe = 
2aU,/u,, are based on the external properties. The 
initial and boundary conditions are : 

Initial conditions 

Z(r, 6, t = 0) = 1, 0 < r < 1 (5) 

Z(r, e, t = 0) = 0, 1 < r < 03. (6) 

Boundary conditions 

K%=f$, at r=l 

(continuity of heat flux) (7a) 

Z, =Z, at r = 1 (7b) 

Z(r, e, t) = 0, r + CO (8) 

az 
- = 0, for 0 = 0 and 0 =X 
ae 

also, Z is finite at r = 0. (9) 

SOLUTION PROCEDURE 

At the droplet center (r = 0) the boundary condition 
on Z(r = 0) is imposed by defining a new variable for 

= q4$+q2c0t e$++g. (12) 

The initial conditions for interior and exterior points 
are : 

W(r, e, t = 0) = r, 0 < r < 1 (13) 

z(q,e,t=o)=o, 0~~~1. (14) 

The boundary conditions imposed on equations (11) 
and (12) are : 

W(r = 0, t) = 0, (15) 

at r=l, q=l (16a) 

W=Z at r=l, v=l (16b) 

aw 
- = 0, $ = 0, for 0 = 0 and 0 = r~ 
ae 

(17) 

Z(q = 0, 8, t) = 0 (free-stream condition). (18) 

Equations (11) and (12) were solved with a AD1 
procedure similar to that used by Abramzon and Borde 
[lo], the primary exceptions being the transformation 
used in equation (12), and the interfacial boundary 
condition [equation (16a)]. It was not found necessary 
to use any up-wind differencing scheme to model the 
convective terms, these terms were modeled with 
central-difference approximations. Equations (11) and 
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(12) yield the following discrete approximations : 

cot 0 

2r2A0 

+ ( --Peuv’ v4 z,_ 

Tzyp > 
I 1-J 

Pe vq q2cot 0 ?f 

m--p-p 2AO A02 
zi, j+ 1 

(20) 

The step size A~J is chosen such that A? = Ar/(Ar + 1). 
With this step size and the initial conditions at the 

interface, a control volume analysis yields the initial 
interfacial temperature of: 

W(r = 1, 0, t = 0) = Z(g = 1, 0,O) 

= H/[(l+Ar)+Hl. (21) 

The interfacial boundary condition [equation (16a)] 
is approximated by : 

where m denotes the column corresponding to the 
interfacial boundary. 

The symmetrical boundaries [equation (17)] are 
modeled as : 

&--4~,,+3~>, = 0 (23a) 

K&,-4H&+3~,,, = 0, for all i. (23b) 

[Note: Z replaces Win equations (23a) and (23b) for 
r > 1, and m denotes the final tangential column.] 

When equations (19) and (20) are treated in the 
normal AD1 method, a tridiagonal matrix results 
everywhere except at the interfacial boundary 
[equation (22)], and at the symmetrical boundaries 
[equations (23a) and (23b)]. At these three boundaries 
the tridiagonal algorithm is modified to account for the 
additional matrix components which are outside the 

main three bands. A 41 x 41 grid was used for Pe < 
1000 (i.e. Ar = l/40, A0 = a/40), a 51 x 5 1 grid was used 
for Pe = 1000. The time step used varied with each 
simulation, depending on the P&let number, the ratio 
of thermal diffusivities, and the ratio of viscosities. For 
each simulation the time step was held constant. The 
time step was not increased with time for two reasons : 
the system might be unstable if time step was too large, 
and the LU decompositions of the resulting matrices 
needed to be recomputed with each change in the time 
step size. Further details of the solution procedure and 
the grid dependence are given in Oliver r13]. 

COMPARISONS WITH PREVIOUS 

INVESTIGATIONS 

The above model and coding may be verified and 
benchmarked against the results of several previous 
investigators. The Nusselt number will be used to 
compare the present model with the various special 
cases cited above. The bulk dimensionless temperature 
is given as : 

Zr2 sin 0 dr d0. (24) 

The Nusselt number is defined by the relation : 

Nu, =- 2aQ 
Jna’(T,,,- Tm)K2 

(25) 

which is equivalent to : 

(26) 

One may also calculate the Nusselt number by 
calculating the flux of heat from the surface of the 
sphere : 

Nu=$ =az, s I b 0 al? v/=1 

sin 0 d0. (27) 

If H is large, or if the time steps are small, then the 
change in the bulk temperature with each time step 
might be small. Under these conditions equation (26) 
will not be a good predictor of the Nusselt number since 
the bulk temperature changes slowly. Even with H = 1, 
there may be a significant difference in the Nusselt 
number predicted by equations (26) and (27), par- 
ticularly at large P&let numbers (i.e. for large times, 
about 2-3% for Pe = 500, A = 1, and H = 1 with a 
41 x 41 grid mesh). This difference may be reduced 
by increasing the number of nodes used. Generally, 
equation (27) was used to calculate the Nusselt 
numbers. 

For the case of low P&let number heat transfer, the 
predictions of the present model may be compared with 
the analytic solution of Cooper [S]. From the work of 
Cooper, an explicit equation for both the Nusselt 
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number and the bulk temperature may be shown to be : 

Z, = 6/nKA’l= 
I 

m [G(u)/u=] du (28) 
0 

s 

m G(u) du 

Nu = 2/3K 

5 

m” (29) 

G(u)u-= du 
0 

where 

G(u) = (A 
exp (-u’AFo)(u cos u-sin u)’ 

2 
u sin2 u+[K(u cos u-sin u)+sin u]‘}’ 

Equations (28) and (29) were numerically integrated 
using Gauss quadrature methods for several values of 
H and A. In Fig. 2, the Nusselt numbers based on the 
analytical work of Cooper are plotted for comparison 
with the values predicted by the present numerical 
model. For all cases tested, it was found that there is a 
good agreement between equation (29) and the present 
model (with Pe = 0), except for extreme cases such 
as very short times, or extreme ratios of thermal 
properties. 

The present model has also been tested against the 
numerical solution of Johns and Beckmann [S] for the 
special case of the internal problem. For comparison 
with the internal problem, both the Nusselt number 
and the Fourier number reported in their work (which 
are based on internal properties) must be converted to 
parameters which are based on the external properties. 
The internal problem has been approximated by setting 
the volumetric heat capacity ratio to H = 0.005 with 
the ratio of diffusivities set to A = 2. Simulations were 
performed for Pe = 320 and 640 with a ratio of 
viscosities of X = 0. In Fig. 3 the Nusselt numbers 
predicted by the present model as compared with the 
appropriate cases reported by Johns and Beckmann aie 
plotted. 

For the case of external resistance, the present model 
(with H = 100, A = 1) has been compared with the 
transient solution for the external problem presented in 

0 Cooper Solution 
Present Result8 

I ___ Johns a Bedtmann 

0.3 - Present Results 

A= 2, H= ,005, x = 0 

0.0 0.05 

Fourier Number 

0.10 

FIG. 3. Nusselt number for the interior problem ; comparison 
with the solution of Johns and Beckmann. 

Abramzon and Elata [3] (with H = m) for Pe = 300 
and Pe = 1000. The Nusselt number predicted by the 
present model is plotted in Fig. 4 for comparison with 
the results reported by Abramzon and Elata. 

In all cases tested-the low P&let number conjugate 

problem, the internal problem, and the external 
problem-the present model compares favorably with 
the special cases cited above. 

RESULTS AND DISCUSSION 

Initially the sharp gradients near the interface cause a 

rapid rate of heat transfer with a correspondingly high 
Nusselt number. For a fluid sphere at moderate P&let 
numbers the Nusselt number oscillates with a decaying 
amplitude. The oscillations are due to the circulation of 
the fluid, in the interior of the droplet. This circulation 
of fluid alternately supplies hot and cold fluid to the 
fore region of the droplet where most of the transfer 
takes place. As time increases the Nusselt number 
asymptotically approaches a steady value. The Nusselt 

1 

Fourier Number 

FIG. 2. Nusselt number for Pe = 0; comparison with the 
solution of Cooper. 

HMT 29:b-E 

L__ Pe = 300 

--- Abramzon a Elata (H = m) 

- Resent Results (H= lOO,A=l) 

01 01 

Fourier Number 

1.0 

FIG. 4. Nusselt number for the external problem ; comparison 
with the solution of Abramzon and Elata. 
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FIG. 5a. Nusselt numbers for a droplet with X = 1 and H = 1, 

A = 1. 

number for a solid sphere also approaches an 
asymptotic value, but without any oscillations. Such 
behavior of the Nusselt number is illustrated in Figs. 5a 
and b. 

The asymptotic Nusselt number appears to be a 
good parameter for quantifying the transfer capabilities 
of a particular system. It appears to be independent of 
both time and of the initial temperature profile of the 
sphere, whereas the initial transient behavior of the 
Nusselt number is a strong function of the initial 
conditions in the sphere. As an example of this 
independence, several simulations were made with 
initial conditions that were other than those given in 
equation (5). Specifically, cases were simulated using 
parabolic and linear initial temperature profiles : 

Z(r, 0,O) = 1 -rz (parabolic), 0 < r < 1 

and 

Z(r, 0,O) = 1 --I (linear), 0 < r < 1. 

The simulations with the parabolic initial conditions 
were made with H = 1 and Pe = 1000 for both a fluid 
sphere and a solid sphere. Similar calculations were 
made with the linear initial profile for H = 1 and Pe = 
200. The Nusselt numbers predicted for these four 
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Fourlar Number 

FIG. Sb. Nusselt number for a solid sphere with H = 3, A = 1. 

_ Reference int. cond. 

Parabolic ht. cad. 

-,’ 

1 I 
00 0 I 0. 2 

Fourier Number 

FIG. 6a. Nusselt numberas a function ofthe initial temperature 

inside the droplet with X = 1, H = 1 and A = 1. 

simulations are shown in Figs. 6a and b for comparison 
with the Nusselt numbers predicted with the reference 
initial conditions [equation (5)]. Note the dependence 
(at small times) of the Nusselt number on the initial 
conditions and the independence of the asymptotic 
behavior of the Nusselt number on the initial tem- 
perature profile of the sphere. 

The primary frequency of oscillation of the Nusselt 
number, for a fluid sphere, is also independent of 
the initial temperature profile of the sphere. This 
demonstrates that the oscillations in the Nusselt 
number are due to the circulation of fluid inside the 
droplet, which is independent of the initial temperature 
profiles. 

Since the value of the asymptotic Nusselt number 
appears to be independent of the initial conditions of 
the sphere, it is an important parameter with respect to 
comparing heat transfer capabilities ofvarious systems. 
Abramzon and Borde [lo] proposed the simple 
predictive equation for the asymptotic Nusselt 

number: 
1 1 

I 

-1 

Nu,,y = ----++ 
K Nnint Na,,t 

A 
_ Reference ht. cond. 

._. Parabolic ht. cond. 

___ Linear ntial cond. 

/ I 1 

(30) 

1 

00 0 I 0.2 

Fourier Number 

FIG. 6b. Nusselt number as a function ofthe initial temperature 
inside a solid sphere with H = 1 and A = 1. 
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with Nuin, representing the asymptotic value of the both have finite values for the asymptotic Nusselt 
Nusselt number for the interior problem (based on the number (6.6 and 2.0, respectively), thus equation (30) 
properties of the droplet phase), and Nu,,, representing would predict a finite value for the asymptotic Nusselt 
the asymptotic value of the Nusselt number for the number for the conjugate problem for Pe = 0. How- 
exterior problem with H = co. The values of the ever, from the analytic work of Cooper [S] it may 
asymptotic Nusselt numbers for the interior problem be shown that the asymptotic Nusselt number for the 
may be read from a graph on p. 60 of Clift et al. [ 111. The conjugate problem with pure diffusion (Pe = 0) is zero. 
values of the asymptotic Nusselt numbers for the Thus equation (30) will overpredict the asymptotic 
exterior problem may be read from a chart presented in Nusselt number at low P&let numbers for conjugate 
Abramzon and Fishbein [Z]. problems. 

Abramzon and Borde showed that equation (30) 
predicted Nu,,r reasonably well for moderate P&let 
numbers for the special case of H other than 1. To test 
the accuracy of equation (30) for other moderate values 
of H, the values of the asymptotic Nusselt number 
predicted by the present finite-difference model are 
listed in Table 1, with the values of the asymptotic 
Nusselt number predicted by equation (30) listed 
in parenthesis. A note of caution should be made 
regarding the asymptotic Nusselt number ; the decay to 
a steady value of the Nusselt number was often slow, 
especially for low P&let numbers. Thus it was difficult 
to determine the exact asymptotic value of the Nusselt 
number, particularly for low P&let numbers. A small 
time step was required since instabilities were noticed 
with this solution procedure. Thus, computer time 
limitations prevented the use of a strict convergence 
criterion. 

The asymptotic value of the Nusselt number is the 
result of the asymptotic behavior of the dimensionless 
temperature profiles when scaled by the dimensionless 
bulk temperature. Define: Y(r, 0) to be the local 
dimensionless temperature scaled by the dimen- 
sionless temporal bulk temperature, i.e. Y(r, 6, t) = 
Z(r, 9, t)/Z,. As time increases Y becomes inde- 
pendent of both time and the initial temperature 
profile of the sphere. The independence of Y on both 
time and the initial conditions is illustrated well by Figs. 
7a and b. In these figures, the contours of Y are plotted for 
two cases. Each has a different initial temperature 
profile and a different bulk temperature, and each 
temperature profile is evaluated at different times yet 
they both have essentially identical contour profiles 
OfY. 

Equation (30) adequately predicts the asymptotic 
value of the Nusselt number for moderate P&let 
numbers. At low P&let numbers equation (30) will 
overpredict the asymptotic Nusselt number. For pure 
diffusion, the interior problem and the exterior problem 

The steady-state profiles of Y for Pe = 100 and 
Pe = 1000 have been plotted on Figs. 8 and 9. The 
same viscosity ratio and thermal conductivity ratios 
were used so that the development of the tempera- 
ture profiles with respect to the P&let number could 
be observed in Figs. 7-9. At lower values of P&let 
numbers, where conduction is still quite important, 

Table 1. (a) Approximate asymptotic value of the Nusselt number : solid 
spheres, A = 1 

Exterior? 
Interior* problem 

Pe problem H = 0.333 H=l H = 3.0 (H = co) 

50 6.6 1.15(1.39) 2.24(2.74) 3.4(3.8) 4.7 
100 6.6 1.46(1.46) 2.82(3.0) 4.2(4.4) 5.6 
200 6.6 1.67(1.53) 3.4(3.3) 5.1(5.1) 6.8 
500 6.6 1.86(1.61) 4.1(3.8) 6.5(6.1) 8.9 

1000 6.6 1.94(1.67) 4.6(4.1) 7.9(7.0) 10.9 

(b) Approximate asymptotic value of the Nusselt number: fluid spheres, 
X=l,A=l 

Interiort Exteriort 
Pe problem H = 0.333 H=l H = 3.0 problem 

50 8.2 1.40(1.70) 2.67(3.3) 4.0(4.5) 5.5 
100 11.2 2.03(2.26) 3.6(4.3) 5.2(5.8) 6.9 
200 14.9 2.67(2.98) 4.8(5.6) 6.9(7.5) 9.0 
500 17.1 4.0(3.7) 7.2(7.4) 10.2(10.4) 13.1 

1000 17.7 4.6(4.1) 9.2(8.8) 13.5(13.2) 17.6 

* Newman. 
t Obtained by solving numerically the energy equation for the external 

region. 
$ Obtained by solving the energy equation for the interior problem. The 

Nusselt number in this case is based on the internal properties (Nu,). 
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Linear initial profile 

I 

L Fo = .3002, Zb = .0066 I 

a:~= 1.4, b:T= 1.1, C:T= O.E,d:T= 0.3, a:T’O.I 

FIG. 7a. Profile of Y for a fluid sphere with a linear initial 
temuerature profile inside the sphere with Pe = 200, X = 1 

and H = b.333. 

Reference initial profile 

I 

Fo = .2002, Zb = .0744 
I 

a:,~-= 1.4, b :‘I-= 1.1, C:T=O.8, d.T’O.3, L:‘,-‘0.1 

FIG. 7b. Profile of I” for a fluid sphere with the reference initial 
profile [equation (5)], with Pe = 200, X = 1 and H = 0.333. 

there is little correlation between the temperature 
contours and the streamline contours. For larger values 
of P&let numbers, the temperature contours begin to 
resemble the streamline contours, except near the 
upstream region of the continuous phase. 

Finally, the above result may be readily applied to 
the problem of mass transfer to droplets and particles. 

a:T = 1.4, b:T= 1.1, c:T= 0.8, d:T= 0.3, e.T’O.1 

FIG. 8. Asymptotic protile for I” for a droplet with X = 1, 
H = 0.333 and Pe = 100. 

r 

a.T= 1.4,b:T=I.I, c:T=0.6, d:T= 0.3, s.T=0.1 

FIG. 9. Asymptotic profile for Y for a droplet with X= I, 
H = 0.333. Pe = 1000. 

Clift et al. [ 1 l] present a good review of the one to one 
correspondence of heat and mass transfer in droplets 
under certain circumstances. 

CONCLUSION 

The unsteady conjugate heat transfer rates from 
a fluid sphere and a spherical particle have been 
numerically estimated for low Reynolds number flows, 
where the thermal diffusivities of the two phases 
are equal, with ratios of the thermal capacities of 
0.333 < H < 3, and for P&let numbers of 50 < 

Pe < 1000. 
The temperature profile, when made dimension- 

less by the difference between the temporal bulk 
temperature of the sphere and the ambient tempera- 
ture, appears to decay to an asymptotic steady-state 
profile that is independent of both time and the initial 
conditions of the droplet. As a result of this asymptotic 
behavior of the dimensionless temperature profile, the 
Nusselt number also asymptotically approaches a 
steady-state value. The value of the asymptotic Nusselt 
number may be adequately approximated, for the 
range of parameters investigated, by the relation given 
in equation (30). 
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TRANSFERT THERMIQUE CONJUGUE, VARIABLE DUNE GOUTTE SPHERIQUE A 
FAIBLE NOMBRE DE REYNOLDS 

Resume-On etudie les phenomtnes de transfert thermique conjugui variable a partir dune goutte ou dune 
particule se deplacant dans un milieu continu fluide. L’equation d’inergie est resolue pour une sphtrule par une 
mtthode implicite de differences finies avec directions alter&es (ADI). Dans cette etude, les capacitis 
thermiques volumiques des deux phases sont cornparables mais pas ntcessairement &gales et les valeurs des 
diffusivitis thermiques des deux phases sont egales. Le domaine des nombres de P&let sont 50 < Pe < 1000, 
avec des rapports des capacitis thermiques volumiques (interieure a exttrieure) variant entre 0,333 et 3,0. Les 
vitesses utilisees dans les termes convectifs sont ceux correspondant a l’icoulement a faible nombre de 
Reynolds. On trouve que le profil de temperature adimensionnel approche asymptotiquement une valeur 

permanente qui est independante du profil initial dans la goutte. 

GEKOPPELTE INSTATIONARE WARMEUBERTRAGUNG VON EINEM KUGELFORMIGEN 
TROPFEN BE1 NIEDEREN REYNOLDSZAHLEN 

Zusammenfassung-Das Phanomen der gekoppelten instationaren Wlrrneiibertragung von einem kugel- 
fiirmigen Triipfchen oder Partikel, das sich in einem Fluid bewegt, wird numerisch untersucht. Die 
Energiegleichung wird fur einen kugelfiirmigen Tropfen mit dem impliziten Differenzenverfahren fur 
alternierende Richtungen (ADI) gel&. Bei dieser Untersuchung sind die volumetrischen Warme- 
kapazitlten der beiden Phasen von vergleichbarer, aber nicht notwendigerweise gleicher GriiBe. Der 
Wert der Temperaturleitfahigkeit der beiden Phasen wird als gleich angenommen. Der Bereich der unter- 
suchten Peclet-Zahlen erstreckt sich von 50 < Pe < 1000; dabei variieren die Verhaltnisse der volu- 
metrischen Warmekapazitaten (innere zu luBere) von 0,333 bis 3,0. Die in den Terrnen fur Konvektion 
beniitzten Geschwindigkeiten entsprechen Striimungen mit niederer Reynolds-Zahl. Es ergab sich, da0 das 
dimensionslose Temperaturprofil sich dem Wert eines stationaren Zustandes, der vom anfanglichen Profil 

im Tropfen unabhlngig ist, annlhert. 

COIIPRxEHHbIH HECTAHHOHAPHbIH TEIIJIOIIEPEHOC C@EPWHECKOH KAIUIM 
HPH MAJIbIX HMCJIAX PEfiHOJIbACA 

hIHOTaIW-%CneHHO HCCneAyeTCK COIIpSKeIiHbIi IIeCTaukiOHapHbIfi TeIInOO6MeH ABWKyLIIefiCa C@pH- 

YecKoii Karma mu YacTaubI co cnnomao~ xnnxoii cpenofi. Ypaanemie sneprae nnn c+epesecroii xannn 
peIIIaeTC,I HellBHbIM KOHeYHO-pa3HOCTHbIM MeTOAOM IIepeMeHHbIX HaIIpaBneHHir. 065eMHbIe TeIInOeM- 

KOCTU o6eax +a3 CpaBHBMbI Me)KAy co6oii,HO He 06a3aTenbHO paBHbI,a UX TeMIIepaTypOIIpOBOAHOCTII 

CYUTBIOTCII OARHaKOBbIMA. kiCCneAOBaHHK IIpOBOAIITCa B AWaIIa30He 'IBCen neK,,e OT 50 A0 lm, 

IIpWIeM OTHOIIIeHllR 06SeMHbIx TeIInOIIpOBOAHOCTefi (BHyTpeHHeii II HapymHOfi @a3) ASMeHflIOTCR OT 

0,333 A0 30 CKOPOCTH, IlCIIOnb3yeMbIe B KOHBeKTHBHblX WIeHaX,COOTBeTCTByIOT TeSeHEIIO IIpa ManbIX 

wcnax PeBHonbAca. HafiAeHO, 'IT0 npo@inb '6e3pa3MepHofi TeMnepaTypbI aCIiMIITOTW4eCKA npa6nu- 

,KaeTCII KCTaIIUOHapHOMyIIpO@UIK),He3aBUCUMOMyOTerOHa~anbHO~ KOH&i~ypauAHBKaIIne. 


